If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w+w^2-90=0
a = 1; b = 3; c = -90;
Δ = b2-4ac
Δ = 32-4·1·(-90)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{41}}{2*1}=\frac{-3-3\sqrt{41}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{41}}{2*1}=\frac{-3+3\sqrt{41}}{2} $
| 2x+3x-6x=100-2x | | 2l=2+6-3 | | -6s+10=-14 | | 2=2m+6-3 | | -10=3+k | | 3/4x+3x-1/4x=1.5x-6 | | 11=8+2x | | 6w+w^2-600=0 | | 1.1211=0.0013x+0.1992 | | 1.22=3x+10 | | -2x+x=2x-3 | | -3x-6x+4x=-2x+4 | | 6/x+2=34 | | -5=y-3/9 | | x-8+54=90 | | 87(2.718281828)^.3x=5918 | | 5(t+40=-t-34 | | 7*100=9*x | | 9×100=45×x | | 12x-20=8x+2 | | 0.0962*x^2+0.6*x-15=0 | | 7-3x=5+4x+12-10x | | 5.x2-125=0 | | 6×(2x-1)=-18 | | 3.x-15=6 | | 2.x+6=20 | | 5r-2=8 | | 19-6g=1 | | 12-2x=`18 | | 4+2a=14 | | 44+8y=10y+14 | | 1/3g-2=1 |